
Exactly solvable quantum state reduction models with time-dependent coupling

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 11029

(http://iopscience.iop.org/0305-4470/39/35/006)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 11029–11051 doi:10.1088/0305-4470/39/35/006

Exactly solvable quantum state reduction models with
time-dependent coupling

Dorje C Brody1, Irene C Constantinou1, James D C Dear2 and
Lane P Hughston2

1 Blackett Laboratory, Imperial College, London SW7 2BZ, UK
2 Department of Mathematics, King’s College London, The Strand, London WC2R 2LS, UK

Received 6 March 2006, in final form 13 July 2006
Published 11 August 2006
Online at stacks.iop.org/JPhysA/39/11029

Abstract
A closed-form solution to the energy-based stochastic Schrödinger equation
with a time-dependent coupling is obtained. The solution is algebraic in
character, and is expressed directly in terms of independent random data.
The data consist of (i) a random variable H which has the distribution
P(H = Ei) = πi , where πi is the transition probability |〈ψ0|φi〉|2 from
the initial state |ψ0〉 to the Lüders state |φi〉 with energy Ei , and (ii) an
independent P-Brownian motion, where P is the physical probability measure
associated with the dynamics of the reduction process. When the coupling is
time independent, it is known that state reduction occurs asymptotically—that
is to say, over an infinite time horizon. In the case of a time-dependent coupling,
we show that if the magnitude of the coupling decreases sufficiently rapidly,
then the energy variance will be reduced under the dynamics, but the state
need not reach an energy eigenstate. This situation corresponds to the case of
a ‘partial’ or ‘incomplete’ measurement of the energy. We also construct an
example of a model where the opposite situation prevails, in which complete
state reduction is achieved after the passage of a finite period of time.

PACS numbers: 03.65.Ta, 02.50.Ey, 02.50.Ga, 02.50.Cw

1. Introduction

This paper is concerned with the problem of obtaining closed-form solutions to the energy-
based stochastic extension of the Schrödinger equation in the case of a time-dependent coupling
parameter. In this situation the dynamical equation of the wavefunction is assumed to satisfy
the following stochastic differential equation:

d|ψt 〉 = −iĤ |ψt 〉 dt − 1
8σ 2

t (Ĥ − Ht)
2|ψt 〉 dt + 1

2σt (Ĥ − Ht)|ψt 〉 dWt. (1)

Here {|ψt 〉}0�t<∞ denotes the state-vector process, which is defined on a probability
space (�,F, P) with filtration {Ft }0�t<∞, with respect to which {Wt }0�t<∞ is a standard
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one-dimensional Brownian motion. The operator Ĥ is the Hamiltonian of the system, and

Ht = 〈ψt |Ĥ |ψt 〉 (2)

is the expectation value of Ĥ in the state |ψt 〉. The time-dependent coupling parameter
{σt }0�t<∞, which has the units (energy)−1 (time)−1/2, and is assumed to be a given positive
function, determines the rate at which state-vector reduction occurs. For simplicity we
consider the case of a pure initial state |ψ0〉; the generalization to the case of a mixed initial
state is straightforward. For convenience we assume that the initial state has norm unity; a
straightforward exercise making use of the Ito calculus then shows that 〈ψt |ψt 〉 = 1 for all
t � 0. Likewise, for simplicity, we assume that the Hamiltonian Ĥ has a discrete spectrum,
and that the Hilbert space is of finite dimension. The possible values of the energy are given
by {Ei}i=1,2,...,N , and the transition probability from the initial state |ψ0〉 to a state of energy
Ei is πi = 〈ψ0|�̂i |ψ0〉, where �̂i denotes the projection operator onto the Hilbert subspace of
states with energy Ei . Equivalently, we can write πi = |〈φi |ψ0〉|2, where |φi〉 = π

−1/2
i �̂i |ψ0〉

is the so-called Lüders state associated with the given initial state |ψ0〉 and the energy Ei .
We note that 〈φi |φi〉 = 1. According to the von Neumann–Lüders state-vector reduction
hypothesis [4, 25, 30], if the initial state of the quantum system is |ψ0〉 and a measurement
of the energy is made with the result Ei , then there is a discontinuous transformation of
the state of the system, and the new state is given by |φi〉. In particular, in the case of a
degenerate spectrum a specific state is selected in this way among all those with the given
eigenvalue.

In the stochastic framework the discontinuous von Neumann–Lüders reduction process
is replaced by a continuous reduction process modelled by equation (1). Depending on the
details of the physical set-up, the reduction process modelled by (1) can be regarded as taking
place either (a) as a consequence of a measurement having been made, or (b) as a result of
interaction of the system with its environment, or (c) spontaneously. For instance, we can
view (1) as a phenomenological ‘reduced-form’ model for the dynamics of a system when
an energy measurement is made. The time-dependent coupling in that case represents the
exogenous intervention of the measurement apparatus in the dynamics of the system.

The mathematical and physical properties of the energy-based stochastic extension of the
Schrödinger equation have been studied extensively in the literature [1–4, 6, 9–13, 22, 24,
32, 33]. The energy-based stochastic Schrödinger equation can be regarded as a special case
of a more general class of stochastic models for the dynamics of the wavefunction that use
nonlinear stochastic differential equations of the form (1), but typically involving a number
of quantum operators. Such models have been introduced with a variety of aims, and in the
general situation the operators need not commute amongst themselves or with the Hamiltonian,
and need not be Hermitian. We mention, e.g., [5, 7, 8, 15, 19, 21, 23, 31, 34], and works cited
therein, as references to the substantial body of publications in this area.

The significance of the energy-based reduction model, in contrast with the more general
situation, is that energy is conserved in expectation. More specifically, it is a property of the
dynamical equation (1) that tr(ρ̂t Ĥ ) is constant, where the time-dependent density matrix ρ̂t

is defined by ρ̂t = EP[|ψt 〉〈ψt |]. Here EP[−] denotes expectation with respect to the physical
probability measure P. Conservation of the energy follows from the fact that

dρ̂t

dt
= −i[Ĥ , ρ̂t ] +

1

4
σ 2

t

[
Ĥ ρ̂t Ĥ − 1

2
Ĥ

2
ρ̂t − 1

2
ρ̂t Ĥ

2
]

. (3)

Thus, the energy-based stochastic Schrödinger equation can be regarded as appropriate to the
description of the dynamics of an isolated system, or any system for which on average there
is no net exchange of energy with the environment.
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When the coupling parameter in equation (1) is a constant, it is possible to obtain a
closed-form solution to this stochastic differential equation [10–13]. The solution to (1) in
the case of a constant coupling parameter can at each time t be expressed as a function of a
state variable ξt , the value of which is determined by the specification of a pair of independent
random data corresponding roughly to the idea of a split between ‘signal’ and ‘noise’. More
specifically, the state-variable process {ξt }0�t<∞ is of the form ξt = σHt + Bt , where H is a
random variable that takes the value Ei (i = 1, 2, . . . , N) with probability πi , and {Bt }0�t<∞
is an independent Brownian motion. The purpose of this paper is to show how this construction
can be generalized to the case of a generic time-dependent coupling.

The paper is organized as follows. In section 2 we introduce an ansatz that leads to the
solution of (1). Some comments are made on the interpretation of the ansatz and its relation
to similar constructions in the theory of filtering. In section 3 we obtain general expressions
for the conditional probability πit = E

[
1{H=Ei }

∣∣Ft

]
and the conditional energy expectation

Ht = E[H |Ft ] in terms of the process {ξt }0�t<∞. Whereas in the time-independent case the
random variable Ht can be expressed, for each value of t, as a function of the state variable
ξt , in the time-dependent case Ht is a functional of the trajectory {ξs}0�s�t . In section 4 we
show that although {ξt } is in general non-Markovian, the corresponding energy process {Ht },
which is a functional of {ξt }, does have the Markov property.

In section 5 we show how the analysis of section 3 leads to an expression for the state-
vector process that solves (1). In section 6 we examine the corresponding ‘inverse’ problem.
We show how, given any random trajectory {|ψt 〉} that solves (1), it is possible to construct
explicitly the independent random data H and {Bt } associated with it. We also remark on the
relation between our solution technique and a well-known linearization method often used in
analysing the properties of (1). Then in section 7 we show that the state vector collapses to
the specified eigenstate, provided a condition on the coupling is satisfied.

More generally, since we consider an essentially arbitrary time-dependent coupling, one
can envisage circumstances in which the coupling ceases before state reduction is complete.
This kind of situation can be regarded as representing an approximate measurement of the
energy, in which partial information is gained but no definite outcome is obtained. In section 8
we examine this case in some detail, and derive upper and lower bounds for the asymptotic
value of the energy variance as t goes to infinity.

Another interesting situation arises when the magnitude of the coupling increases
sufficiently rapidly to ensure that state reduction is completed after the passage of a finite
amount of time. In section 9 a special example of such a model is constructed. This example
turns out to have a direct relationship to the finite-time collapse model introduced in [11]. The
model presented in [11] is based on a constant coupling parameter and a Brownian bridge
noise. Here we present an alternative model for finite-time collapse, for which the noise is a
standard Brownian motion and the coupling is time dependent. We demonstrate that the two
models are physically equivalent.

While the probabilistic method presented in section 3 is effective in obtaining the solution
to the problem under consideration here, there are circumstances in which other methods are
useful as well. We thus outline two further approaches for obtaining the solution. In appendix
A we introduce a method that involves a discretization and a continuum limit, and proceeds in
a manner similar to the analysis entailed in the evaluation of Feynman integrals. The method
is computationally intense, but is satisfying because it allows one to work directly with the
quantities under investigation. In appendix B we consider another method that is similar to
the path integral approach, except that we use a decomposition of the state-variable trajectory
into increments, and we regard the time-dependent coupling as moderating the noise rather
than the signal.
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2. The quantum information process

The ansatz that we use to solve (1) is based on the specification of a state-variable process {ξt }
which, for reasons discussed shortly, will be called the ‘quantum information process’, and is
of the following form:

ξt = H

∫ t

0
σs ds + Bt . (4)

Here H denotes a random variable on the given probability space (�,F, P), taking the
possible values {Ei}i=1,2,...,N with the probabilities {πi}i=1,2,...,N , and {Bt }0�t<∞ is a standard
Brownian motion, independent of H. We do not assume that {Bt } is adapted to the filtration
{Ft } introduced earlier. On the contrary, we shall see later that {Ft } is generated by {ξt }. The
various terms appearing in (4) can be given an interpretation in the language of filtering theory.
This ‘signal and noise’ interpretation, although not essential to the use of the ansatz to solve
(1), is nonetheless physically very suggestive, and as a consequence helps to motivate the form
that the solution takes. Indeed, the methodology of filtering theory has been already shown
to be effective in deriving solutions to the energy-based stochastic Schrödinger equation [10],
and in what follows we take this line of investigation further.

The random variable H, according to this interpretation, represents the unknown terminal
value of the energy of the quantum system whose time evolution is described by equation (1).
The term H

∫ t

0 σs ds in (4) should be thought of as the ‘signal’ component of the quantum
information process. As time passes, the magnitude of the signal component increases, but
the true value of H remains obscured by the presence of a noise process {Bt }0�t<∞. The
‘accessible’ information concerning the value of H is represented by the process {ξt }0�t<∞,
which consists of both signal and noise. Given the history {ξs}0�s<t over a finite time interval
[0, t], it is not generally possible to disentangle the true value of H from the noise. In the
context of filtering theory, the task in such a set-up is to determine the best estimate of H,
given the information of the trajectory {ξs}0�s�t from time zero to time t. It is a remarkable
feature of the stochastic Schrödinger equation that the expectation of the Hamiltonian turns
out to be given by such an estimate.

In the first part of the paper we shall examine the case for which the state-vector trajectory
{|ψt 〉} satisfies the dynamical equation (1) for all t ∈ [0,∞). In order for the trajectory
{|ψt 〉}0�t<∞ to be well defined, the coupling function {σt }0�t<∞ must be such that∫ t

0
σ 2

s ds < ∞, 0 � t < ∞. (5)

Additionally, as will be established in section 7, to ensure a complete reduction of the state
vector, the coupling function must be chosen such that

lim
t→∞

∫ t

0
σ 2

s ds = ∞. (6)

The purpose of this condition is to ensure that the coupling remains reasonably ‘strong’ for all
time, and does not attenuate too much.

There are circumstances in which (5) is satisfied but (6) is not. In such situations the
wavefunction need not fully collapse to an eigenstate, even though the energy variance will be
reduced. This case is examined in section 8. It will be assumed throughout sections 3–8 that
{ξt } and {σt } are defined for all t in the range 0 � t < ∞, and that (5) holds. In section 9 we
drop the assumption of an infinite collapse time, and consider the case for which the integral
of {σt } diverges after a finite passage of time.

The estimation problem posed by an ansatz of the form (4) is well established in the
literature of nonlinear filtering [14, 29]. The relevance of (4) to the dynamics of the quantum
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state {|ψt 〉} satisfying the stochastic Schrödinger equation (1), on the other hand, is not
obvious. As we shall demonstrate, the information generated by {ξs}0�s�t is equivalent
to the information generated by the evolution {|ψs〉}0�s�t of the quantum state itself. We
formalize this notion by observing that {ξt }0�t<∞ and {|ψt 〉}0�t<∞ generate the same filtration
{Ft }0�t<∞. As a consequence, the energy process {Ht } determined by the quantum expectation
(2) of the Hamiltonian operator turns out to be indistinguishable from the process generated
as t varies by the mathematical expectation of the random variable H, conditional on the
specification of the trajectory {ξs}0�s�t .

The best estimate for H, in the sense of least quadratic error, given the history of the
information process up to time t, is known (see, e.g., [10]) to be the conditional expectation

Ht = E[H |{ξs}0�s�t ]. (7)

We have used the same notation {Ht } for the processes defined in (2) and in (7) because these
processes will be shown to be the same. When {σt } is constant, equation (7) can be simplified
to the form Ht = E[H |ξt ]. In this case, {ξt } is Markovian: this is the situation considered
in [10–13]. However, if {σt } is not constant, then in general the trajectory {ξs}0�s�t must be
taken into account to determine the conditional expectation (7). The non-Markovian property
of {ξt } can be seen intuitively as follows. Writing (4) in differential form, we have

dξt = σtH dt + dBt, (8)

which makes it evident that {σt } determines the strength of the signal, that is to say, the rate
at which the true value of H is revealed. If {σt } is constant, then sampling from {ξt } at any
small time period in the interval [0, t] is as good as any other. This is, in essence, the property
of {ξt }, when {σt } is constant, that makes it Markovian. If {σt } is not constant, then there is
a temporal bias in the sampling from {ξt }, and observations from different periods cannot be
treated on an equal footing.

3. Conditional probability process

Our goal in this section is to work out an explicit expression for the conditional probability
process {πit } defined by

πit = E
[
1{H=Ei }

∣∣{ξs}0�s�t

]
. (9)

Here 1{A} denotes the indicator function which takes the value unity if A is true, and zero if
A is false. Once we obtain πit , then the conditional expectation (7) can be obtained by the
relation Ht =∑i πitEi .

To determine {πit } we use a change-of-measure technique (see, e.g., [14, 17, 26]),
proceeding as follows. Let (�,F, P) be a probability space on which a standard Brownian
motion {Bt } is defined, and let H be a random variable on (�,F, P) that is independent of
{Bt }. We fix a time interval [0, u], and let {ξt }0�t�u be given by

ξt = H

∫ t

0
σs ds + Bt, (10)

where {σt } is deterministic and satisfies (5). Next, we define a process {	t }0�t�u over [0, u]
by the expression

	t = exp

(
H

∫ t

0
σs dξs − 1

2
H 2
∫ t

0
σ 2

s ds

)
, (11)

or equivalently, by virtue of (10),

	−1
t = exp

(
−H

∫ t

0
σs dBs − 1

2
H 2
∫ t

0
σ 2

s ds

)
. (12)
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The idea is to use {	t } to make a change of probability measure. The new probability
measure will be defined on the space (�,Gu), where Gu ⊂ F is the σ -subalgebra of events
determined by the specification of the trajectory {Bt }0�t�u over the given time horizon,
together with H.

We recall that the points of � represent the possible outcomes of chance, and the elements
of F are subsets of � with the property that for each such subset A ∈ F the measure P assigns
a probability P(A) to the event that ω ∈ A. The elements of Gu consist of those elements
A ∈ F with the property that knowledge of the value of H and the trajectory {Bt }0�t�u

is sufficient to determine whether ω ∈ A. For any element A ∈ Gu, the value of the indicator
function 1{ω∈A} is determined by the specification of H and {Bt }0�t�u. The new measure Q

on (�,Gu) is then given as follows. For any set A ∈ Gu, we define

Q(A) = EP
[
	−1

u 1{ω∈A}
]
. (13)

This relation is usually abbreviated by writing dQ = 	−1
u dP. Since EP

[
	−1

u

] = 1 by virtue
of elementary properties of the stochastic exponential (12), it follows that Q(�) = 1.

Given the set-up described above, we have the following facts: (i) on the probability space
(�,Gu, Q), the process {ξt }0�t�u defined by (10) is a Brownian motion, and is independent
of H; (ii) the random variable H has the same probability law with respect to Q as it does with
respect to P; (iii) for all t ∈ [0, u], the conditional expectation ft = EP[f (H)|{ξs}0�s�t ] of a
function of the random variable H can be expressed in the form

ft = EQ[f (H)	t |{ξs}0�s�t ]

EQ[	t |{ξs}0�s�t ]
. (14)

To work out an expression for πit we start with the definition (9), substitute (11) into (14)
and set f (H) = 1{H=Ei } to obtain

πit = πi exp
(
Ei

∫ t

0 σs dξs − 1
2E2

i

∫ t

0 σ 2
s ds

)
∑

i πi exp
(
Ei

∫ t

0 σs dξs − 1
2E2

i

∫ t

0 σ 2
s ds

) . (15)

Similarly, by setting f (H) = H we obtain

Ht =
∑

i πiEi exp
(
Ei

∫ t

0 σs dξs − 1
2E2

i

∫ t

0 σ 2
s ds

)
∑

i πi exp
(
Ei

∫ t

0 σs dξs − 1
2E2

i

∫ t

0 σ 2
s ds

) . (16)

The result appears at first glance to depend on the choice of time horizon u, since {πit } and
{Ht } are only defined for t ∈ [0, u]; but it is straightforward to see that (15) and (16) remain
valid for all t ∈ [0,∞).

The arguments establishing the validity of (i), (ii) and (iii) above can be sketched briefly
as follows. First we note that the relation between expectation under the P-measure and
expectation under the Q-measure is given by

EQ[X] = EP
[
	−1

u X
]
. (17)

To see that {ξt }0�t<∞ is a Brownian motion on (�,F, Q) it suffices to show that

EQ[exξs+yξt ] = e
1
2 (x2s+y2t+2xys) (18)

for s � t and for all x, y. In particular, if {ξt } possesses this bi-characteristic function, then it
follows at once that {ξt } is Q-Gaussian, and that Cov[ξs, ξt ] = s for s � t . These properties,
together with the fact that {ξt } is continuous, are sufficient to characterize it as a Brownian
motion under Q. The verification of (18) follows by a calculation that makes use of (10),
(12) and (17), the P-independence of H and {Bt }, and basic properties of {Bt } under P. The
Q-independence of H and {ξt } then follows by a similar calculation that establishes that

EQ[exξt +yH ] = e
1
2 x2t
∑

i

πi eyEi . (19)
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To show that the probability law of H is the same under P and Q we make use of the
P-independence of H and {Bt } to observe that

Q(H = Ei) = EP
[
	−1

u 1{H=Ei }
]

= EP

[
1{H=Ei } exp

(
−H

∫ t

0
σs dBs − 1

2
H 2
∫ t

0
σ 2

s ds

)]

= EP

[
1{H=Ei } exp

(
−Ei

∫ t

0
σs dBs − 1

2
E2

i

∫ t

0
σ 2

s ds

)]

= EP
[
1{H=Ei }

]
EP

[
exp

(
−Ei

∫ t

0
σs dBs − 1

2
E2

i

∫ t

0
σ 2

s ds

)]
= P(H = Ei). (20)

As for (iii), we remark first that relation (14) is a special case of a more general result
referred to as the Kallianpur–Striebel formula [27]. A derivation of (14) can be sketched
as follows. We reverse the construction above and start with a probability space (�,F, Q)

on which {ξt }0�t<∞ is a standard Brownian motion, and H an independent random variable
taking the values {Ei}i=1,2,...,N with the probabilities {πi}i=1,2,...,N . We fix a time interval
[0, u] and let Gu denote the σ -subalgebra of events generated by {ξt }0�t�u and H. Assuming
that {σt } satisfies (5), we define the process {	t }0�t�u by (11), as before, and we introduce
the measure P by setting dP = 	u dQ, or equivalently, P(A) = EQ[	u1{ω∈A}]. Then the
process {Bt }0�t�u defined by Bt = ξt − H

∫ t

0 σs ds is a Brownian motion with respect to P,
and is P-independent of H. It is worthwhile emphasizing that Ft = σ({ξs}0�s�t ), whereas
Gt = σ(H, {ξs}0�s�t ) = σ(H, {Bs}0�s�t ). Thus Ft ⊂ Gt . One can think of {Ft } as the
filtration generated by the dynamics of the state vector process {|ψt 〉}0�t<∞, whereas in the
larger ‘nonphysical’ filtration {Gt } the value of H is already ‘known’ at time 0. It follows by
the conditional form of the change of measure relation that

EP[f (H)|{ξs}0�s�t ] = EQ[f (H)	u|{ξs}0�s�t ]

EQ[	u|{ξs}0�s�t ]
. (21)

Finally, we use the fact that H and {ξs}0�s�u are Q-independent to deduce that

EQ[f (H)	u|{ξs}0�s�t ] = EQ[f (H)	t |{ξs}0�s�t ] (22)

for any choice of f (H), and as a consequence we deduce (14).

4. On the Markovian nature of the energy process

Before we verify that our expression (16) for the conditional expectation of H agrees with the
energy process (2), it will be useful to show that {Ht }, as defined by (16), has the Markov
property. We note in particular that by virtue of (16) we have

Ht =
∑

i πiEi exp
(
Eiηt − 1

2E2
i

∫ t

0 σ 2
s ds

)
∑

i πi exp
(
Eiηt − 1

2E2
i

∫ t

0 σ 2
s ds

) , (23)

where the process {ηt }0�t<∞ is defined by

ηt =
∫ t

0
σs dξs. (24)

To show that {Ht } is a Markov process it will suffice if we can show (i) that {ηt } is a Markov
process and (ii) that ηt can be expressed as a function of Ht , i.e., that the relation between
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ηt and Ht is invertible. In particular, if the relation between ηt and Ht is invertible, then the
filtration generated by {ηt } is the same as the filtration generated by {Ht }.

To verify that {ηt } is Markovian we must demonstrate that, for all T � t and for all x ∈ R,
we have

P(ηT � x|{ηs}0�s�t ) = P(ηT � x|ηt ). (25)

Alternatively, it suffices to show that

P(ηt � x|ηs, ηs1 , ηs2 , . . . , ηsk
) = P(ηt � x|ηs) (26)

for any collection of times t, s, s1, s2, . . . , sk such that t � s � s1 � s2 � · · · � sk > 0. To
check that these conditions are satisfied we proceed as follows. First we note that by virtue of
(24) we have

ηt = H

∫ t

0
σ 2

s ds +
∫ t

0
σs dBs, (27)

and therefore

ηu∫ u

0 σ 2
s ds

− ηv∫ v

0 σ 2
s ds

=
∫ u

0 σs dBs∫ u

0 σ 2
s ds

−
∫ v

0 σs dBs∫ v

0 σ 2
s ds

(28)

for all u � v > 0. We shall establish that the process {ϕu}u>0 defined by

ϕu =
∫ u

0 σs dBs∫ u

0 σ 2
s ds

(29)

appearing in (28) has independent increments. In particular, since {ϕu} is a Gaussian process
it suffices to show that ϕb − ϕa and ϕd − ϕc are independent for all d � c � b � a > 0.
To see this, we note that since ϕb − ϕa and ϕd − ϕc are Gaussian random variables, for their
independence it is sufficient to verify that the covariance E[(ϕb −ϕa)(ϕd −ϕc)] vanishes. But
this follows after a short calculation making use of the Wiener–Ito isometry

E

[(∫ u

0
σs dBs

)(∫ v

0
σs dBs

)]
=
∫ u∧v

0
σ 2

s ds, (30)

where u ∧ v = min(u, v). Similarly, one can verify that ϕc is independent of ϕb − ϕa for all
c � b � a > 0. This follows from the fact that the increment ϕ∞ − ϕc is independent of
ϕb − ϕa . Next we observe that as a consequence of the definitions of {ηt } and {ϕt } we have

P
(
ηt � x

∣∣ηs, ηs1 , ηs2 , . . . , ηsk

) = P
(
ηt � x

∣∣ηs, ϕs − ϕs1 , ϕs1 − ϕs2 , . . . , ϕsk−1 − ϕsk

)
. (31)

However, since ηt and ηs are independent of ϕs − ϕs1 , ϕs1 − ϕs2 , . . . , ϕsk−1 − ϕsk
, the desired

result (26) follows.
To show that Ht is invertible as a function of ηt it will suffice to show that for each fixed

t the function

H(η, t) =
∑

i πiEi exp
(
Eiη − 1

2E2
i

∫ t

0 σ 2
s ds

)
∑

i πi exp
(
Eiη − 1

2E2
i

∫ t

0 σ 2
s ds

) (32)

is monotonic in η. But this can be seen immediately, since

∂H(η, t)

∂η
=
∑

i πi(Ei − H(η, t))2 exp
(
Eiη − 1

2E2
i

∫ t

0 σ 2
s ds

)
∑

i πi exp
(
Eiη − 1

2E2
i

∫ t

0 σ 2
s ds

) , (33)

which is positive for all values of η. As a consequence, we see that the process {Ht } as
defined by (16) has the Markov property. In particular, we have the following equalities:
P(HT � x|{Hs}0�s�t ) = P(HT � x|Ht) = P(HT � x|ηt ) = P(HT � x|Ft ).
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It is interesting to note that the conditional probability process {πit } given by (15) can be
expressed in the form

πit = πis exp
(
Ei

∫ t

s
σu dξu − 1

2E2
i

∫ t

s
σ 2

u du
)

∑
i πis exp

(
Ei

∫ t

s
σu dξu − 1

2E2
i

∫ t

s
σ 2

u du
) . (34)

The interpretation of this relation is that the energy-based reduction models exhibit a
fundamental dynamic consistency property. In other words, if at some intermediate time
s, where 0 < s < t , we take note of the a posteriori conditional probability πis , which is based
on all information available up to time s, then we see that the resulting ‘new’ model for the
collapse of the wavefunction, given by (34), is of exactly the same form as the original model,
with πis playing the role of the new a priori probability. This means that the choice of the
initial time t = 0 has no preferential status in the theory. Indeed, the dynamical consistency
of the energy-based reduction theory shows that the objections raised by Pearle [32] in this
connection are groundless. It is perfectly consistent to regard the collapse process as having
already started at some earlier time than ‘the present’.

5. Innovation process and solution

In section 3 we calculated the expectation of the random variable H conditional on the
specification of {ξs}0�s�t , and we claimed that the result gives the energy expectation process
(2). The aim of this section is to verify this claim by showing how {ξt } is related to the
Brownian motion {Wt } of equation (1). We begin by analysing the dynamics of the energy
process (16). A direct application of Ito’s rule shows that

dHt = −σ 2
t HtVt dt + σtVt dξt , (35)

where

Vt = E[(H − Ht)
2|{ξs}0�s�t ] (36)

is the conditional variance of H. The next step is to define a random process {Wt } by

Wt = ξt −
∫ t

0
σsHs ds. (37)

It follows then from (35) that the dynamical equation for {Ht } is given by

dHt = σtVt dWt. (38)

Equation (38) can be given a simple heuristic interpretation if we write it in the form

Ht+dt − E[Ht+dt |{ξs}0�s�t ] = σtVt dWt. (39)

Since at t the variance Vt is known, as is also the conditional expectation E[Ht+dt |{ξs}0�s�t ],
we see that dWt embodies the ‘new information’ entering the system between t and t + dt . It
is for this reason that {Wt } is called an innovation process.

We claim that {Wt } is an {Ft }-Brownian motion. Here we recall that {Ft } denotes the
filtration generated by the process {ξt }. Thus, conditioning with respect to the σ -algebra Ft

means conditioning with respect to the trajectory {ξs}0�s�t . To proceed we need now a more
precise definition of Brownian motion. A process {Wt }0�t�∞ on a probability space (�,F, P)

with filtration {Ft }0�t�∞ is said to be a standard Brownian motion if it satisfies the following
properties: (i) W0 = 0 almost surely; (ii) {Wt } is {Ft }-adapted; and (iii) for all 0 � s � t

the increment Wt − Ws is normally distributed with mean zero and variance t − s, and is
independent of Fs . In the present context we shall use the so-called Lévy characterization of
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Brownian motion, which states that if {Wt } is a martingale, and if (dWt)
2 = dt , then {Wt } is a

Brownian motion.
Let us consider the martingale condition. Writing Et [−] = E[−|Ft ] for conditional

expectation with respect to Ft , we shall establish that Et [WT ] = Wt for t � T . We find

Et [WT ] = Et [ξT ] − Et

[∫ T

0
σsHs ds

]

= Ht

∫ T

0
σs ds + Et [BT ] −

∫ T

0
σsEt [Hs] ds, (40)

where we have substituted (4) and we have interchanged the order of integration and
expectation by use of the Fubini theorem. Next, we note that∫ T

0
σsEt [Hs] ds =

∫ t

0
σsEt [Hs] ds +

∫ T

t

σsEt [Hs] ds

=
∫ t

0
σsHs ds + Ht

∫ T

t

σs ds. (41)

Here we have used the fact that Ht = Et [H ] satisfies the martingale condition Et [Hs] = Ht

for s � t . Hence substituting (41) into (40) we obtain

Et [WT ] = Ht

∫ t

0
σs ds + Et [BT ] −

∫ t

0
σsHs ds. (42)

Finally, from the tower property of conditional expectation we have

Et [BT ] = Et [E[BT |{Bs}0�s�t , H ]] = Et [Bt ]. (43)

Inserting this relation into (42) we obtain

Et [WT ] = Et

[
H

∫ t

0
σs ds + Bt

]
−
∫ t

0
σsHs ds

= ξt −
∫ t

0
σsHs ds = Wt, (44)

where we have used the relation Et [ξt ] = ξt . This establishes that {Wt } is an {Ft }-martingale.
On the other hand, because

dWt = (H − Ht)σt dt + dBt, (45)

it follows that (dWt)
2 = dt . Taking this together with the fact that {Wt } is an {Ft }-martingale,

we conclude by Lévy’s criterion that {Wt } is an {Ft }-Brownian motion.
We are now closer to establishing the relation between (2) and (16). To this end, we

consider the conditional probability (15) that H takes the value Ei . Taking the stochastic
differential of (15) and substituting (37) into the result, we find, after some rearrangement,
that {πit } satisfies

dπit = σt (Ei − Ht)πit dWt. (46)

With another application of the Ito formula, we thus deduce that

dπ
1/2
it = − 1

8σ 2
t (Ei − Ht)

2π
1/2
it dt + 1

2σt (Ei − Ht)π
1/2
it dWt. (47)

Finally, if we let |φi〉 denote the normalized Lüders state [4, 30] associated with the eigenvalue
Ei , and define {|ψt 〉} according to

|ψt 〉 =
∑

i

e−iEi tπ
1/2
it |φi〉, (48)
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then it follows at once from (47) that {|ψt 〉} satisfies the time-dependent energy-based stochastic
Schrödinger equation (1).

In summary, if we define {ξt } and {ηt } in terms of the independent random data H and
{Bt } according to (4) and (24), and if we define {Ht } and {|ψt 〉} by (16) and (48), and {Wt } by
(37), then {|ψt 〉} solves (1) for the given Hamiltonian Ĥ and initial condition |ψ0〉.

6. Direct derivation of independent random data

The way in which we have solved equation (1) is by introducing the concept of a quantum
information process (4) specified in terms of a random variable H and an independent Brownian
motion {Bt }. It is possible, however, to deduce the existence of these random data directly
from (1). In this section we shall illustrate this reverse construction.

We begin by remarking that the energy-based stochastic Schrödinger equation can be cast
into integral form, incorporating the initial condition |ψ0〉, as follows:

|ψt 〉 = exp

(
−iĤ t − 1

4

∫ t

0
σ 2

s (Ĥ − Hs)
2 ds +

1

2

∫ t

0
σs(Ĥ − Hs) dWs

)
|ψ0〉. (49)

After some simple rearrangement we then deduce that

|ψt 〉 = exp
(−iĤ t + 1

2 Ĥ
∫ t

0 σs(dWs + σsHs ds) − 1
4 Ĥ

2 ∫ t

0 σ 2
s ds

)|ψ0〉
exp
(

1
2

∫ t

0 σsHs(dWs + σsHs ds) − 1
4

∫ t

0 σ 2
s H 2

s ds
) . (50)

Given the {Ft }-adapted Brownian motion {Wt } and the energy expectation process {Ht } =
{〈ψt |Ĥ |ψt 〉} we now define a process {ξt } by writing

ξt = Wt +
∫ t

0
σsHs ds. (51)

It follows then that |ψt 〉 can be written in the form

|ψt 〉 = exp
(−iĤ t + 1

2 Ĥ
∫ t

0 σs dξt − 1
4 Ĥ

2 ∫ t

0 σ 2
s ds

)|ψ0〉
exp
(

1
2

∫ t

0 σsHs dξt − 1
4

∫ t

0 σ 2
s H 2

s ds
) . (52)

With these ingredients at hand we now claim the following: the random variables
H = limt→∞ Ht and Bt = ξt − H

∫ t

0 σs ds are independent. Furthermore, the process
{Bt } thus defined is a standard P-Brownian motion.

The existence of the random variable H is ensured by the martingale convergence theorem.
The fact that H has the distribution P(H = Ei) = πi then follows as a consequence of known
properties of the stochastic equation (1). To show that H and Bt are independent (for any value
of t) it suffices to show that

EP[exBt +yH ] = EP[exBt ]EP[eyH ] (53)

for any x, y. The proof proceeds as follows. First, by use of the tower property of conditional
expectation we have

EP[exBt +yH ] = EP

[
exp

(
x

(
ξt − H

∫ t

0
σs ds

)
+ yH

)]

= EP

[
exp(xξt )E

P
t

[
exp

((
y − x

∫ t

0
σs ds

)
H

)]]
, (54)

where Et denotes conditional expectation with respect to Ft . Here we have used the fact that
ξt is Ft -measurable. For the inner expectation we can write

EP
t

[
exp

((
y − x

∫ t

0
σs ds

)
H

)]
=
∑

i

πit exp

((
y − x

∫ t

0
σs ds

)
Ei

)
, (55)
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where πit is defined as the conditional probability

πit = P(H = Ei |Ft ). (56)

To obtain an expression for {πit } we recall [4, 6] that since the projection operator �̂i commutes
with the Hamiltonian, the bounded process {〈ψt |�̂i |ψt 〉} is a martingale. It follows that

〈ψt |�̂i |ψt 〉 = EP
t [〈ψ∞|�̂i |ψ∞〉]. (57)

On the other hand, by known properties of the reduction process (1) we have 〈ψ∞|�̂i |ψ∞〉 =
1{H=Ei }, and hence

〈ψt |�̂i |ψt 〉 = EP
t

[
1{H=Ei }

]
. (58)

We are therefore able to deduce that P(H = Ei |Ft ) = πit = 〈ψt |�̂i |ψt 〉. A short calculation
making use of (52) and properties of the projection operator then shows that

πit = πi exp
(
Ei

∫ t

0 σs dξt − 1
2E2

i

∫ t

0 σ 2
s ds

)
exp
( ∫ t

0 σsHs dξt − 1
2

∫ t

0 σ 2
s H 2

s ds
) . (59)

In fact, with a little work one can also show that πit = |〈φi |ψt 〉|2. In other words, πit is
given by the usual formula for the quantum-mechanical transition probability from the state
|ψt 〉 to the Lüders state |φi〉. Of course, in standard quantum mechanics it is an assumption
that πit , when defined in this way, has the interpretation of a transition probability. But in the
stochastic theory, we deduce this property.

Returning to our calculation of the inner conditional expectation in formula (54), we see
as a consequence of (59) that

EP
t

[
exp

((
y − x

∫ t

0
σs ds

)
H

)]

=
∑

i πi exp
((

y − x
∫ t

0 σs ds
)
Ei

)
exp
(
Ei

∫ t

0 σs dξt − 1
2E2

i

∫ t

0 σ 2
s ds

)
exp
(∫ t

0 σsHs dξt − 1
2

∫ t

0 σ 2
s H 2

s ds
) . (60)

It follows that

EP[exBt +yH ] = EP

[
exξt
∑

i πi exp
((

y − x
∫ t

0 σs ds
)
Ei

)
exp
(
Ei

∫ t

0 σs dξt − 1
2E2

i

∫ t

0 σ 2
s ds

)
exp
(∫ t

0 σsHs dξt − 1
2

∫ t

0 σ 2
s H 2

s ds
)

]

=
∑

i

πi exp

((
y − x

∫ t

0
σs ds

)
Ei

)
EP

[
exξt exp

(
Ei

∫ t

0 σs dξt − 1
2E2

i

∫ t

0 σ 2
s ds

)
exp
(∫ t

0 σsHs dξt − 1
2

∫ t

0 σ 2
s H 2

s ds
)
]
.

(61)

Next we observe that, since dξt = dWt + σtHt dt , the expectation appearing above can be
written in the form

EP

[
exξt exp

(
Ei

∫ t

0 σs dξt − 1
2E2

i

∫ t

0 σ 2
s ds

)
exp
(∫ t

0 σsHs dξt − 1
2

∫ t

0 σ 2
s H 2

s ds
)
]

= EP

[
exp

(
−
∫ t

0
σsHs dWs − 1

2

∫ t

0
σ 2

s H 2
s ds

)
exξt

× exp

(
Ei

∫ t

0
σs dξt − 1

2
E2

i

∫ t

0
σ 2

s ds

)]
. (62)

However, the expression

�t = exp

(
−
∫ t

0
σsHs dWt − 1

2

∫ t

0
σ 2

s H 2
s ds

)
(63)
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is the change-of-measure density over the interval [0, t] needed to make {ξs}0�s�t a standard
Brownian motion. Writing Q for the resulting new measure, by use of the Girsanov theorem
we obtain

EP[exBt +yH ] =
∑

i

πi exp

((
y − x

∫ t

0
σs ds

)
Ei

)

× EQ

[
exξt exp

(
Ei

∫ t

0
σs dξt − 1

2
E2

i

∫ t

0
σ 2

s ds

)]
. (64)

By rearranging terms, the expectation on the right above can be rewritten in the form

EQ

[
exξt exp

(
Ei

∫ t

0
σs dξt − 1

2
E2

i

∫ t

0
σ 2

s ds

)]
= exp

(
1

2
x2t + xEi

∫ t

0
σs ds

)

× EQ

[
exp

(∫ t

0
(Eiσs + x) dξt − 1

2

∫ t

0
(Eiσs + x)2 ds

)]
. (65)

Since {ξt } is a Q-Brownian motion, it follows that the expectation appearing on the right-hand
side of (65) has the value unity. As a consequence, we deduce that

EP[exBt +yH ] = e
1
2 x2t
∑

i

πi eyEi . (66)

We see therefore that Bt and H are independent, as claimed. We also see, by the form of its
characteristic function, that Bt is Gaussian, with mean 0 and variance t. An argument similar
to that presented above shows that if s � t then

EP[exBs+y(Bt−Bs)] = e
1
2 x2sey2(t−s) (67)

for all x, y, and hence Cov(Bs, Bt ) = s for s � t . Since {Bt } is a continuous Gaussian process
and has the correct mean and autocovariance properties, we deduce that {Bt } is a standard
P-Brownian motion.

We have therefore shown that the solution to (1) can be put into the form (52), with
ξt = H

∫ t

0 σs ds + Bt , where H = limt→∞〈ψt |Ĥ |ψt 〉, and where {Bt } is an independent
standard Brownian motion.

Conversely, as we have shown earlier in the paper, if on a fixed probability space
(�,F, P) we are given a random variable H with the distribution P(H = Ei) = πi together
with an independent standard Brownian motion {Bt }, then we can proceed as follows: we
construct the process {ξt } by setting ξt = H

∫ t

0 σs ds + Bt ; we define the process {Ht } by
Ht = E[H |Ft ] where {Ft } is the filtration generated by {ξt }; we define the process {πit } by
setting πit = E

[
1{H=Ei }

∣∣Ft

]
; and we define the {Ft }-adapted Brownian motion {Wt } by setting

Wt = ξt − ∫ t

0 σsHs ds. Then {|ψt 〉}, defined by |ψt 〉 =∑i e−iEi tπ
1/2
it |φi〉, satisfies (1).

Let us now consider briefly the ‘linearization’ technique (see, e.g., [8] and references cited
therein) often used for studying the dynamics of (1). Starting with (1), we proceed as above
to deduce (52), defining the process {ξt } as in (51). Next we observe that if we introduce a
process {|�t 〉} by defining

|�t 〉 = exp

(
−iĤ t +

1

2
Ĥ

∫ t

0
σs dξt − 1

4
Ĥ

2
∫ t

0
σ 2

s ds

)
|ψ0〉, (68)

then |�t 〉 satisfies

d|�t 〉 = −iĤ |�t 〉 dt − 1
8σ 2

t Ĥ
2|�t 〉 dt + 1

2σt Ĥ |�t 〉 dξt . (69)

We note that |�t 〉 appears in the numerator of (52). Thus the relation between |�t 〉 and |ψt 〉
is given by
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|ψt 〉 = |�t 〉√〈�t |�t 〉
, (70)

where

〈�t |�t 〉 = exp

(∫ t

0
σsHs dξt − 1

2

∫ t

0
σ 2

s H 2
s ds

)
. (71)

Now suppose we fix a finite time interval [0, T ], and change to a new measure Q by use of
the density �T = 〈�T |�T 〉−1. Then over the interval [0, T ] the process {ξt } is a Q-Brownian
motion. Thus in the measure Q we can ‘solve’ (1) by expressing |ψt 〉 in terms of |�t 〉, making
use of (68) and (70). Equation (69) holds under both P and Q, but under Q it is a linear
equation, and hence under Q we can regard (68) as the solution of (69).

The existence of this underlying ‘linearization’ of (1), together with the fact that there
is only a single Hermitian operator appearing in the dynamics, may help to explain why the
problem is exactly solvable. Of course, the ‘physics’ is in the measure P, so any application
of the linearization technique to solve a physical model typically involves using the density
�−1

T to change from Q back to P. In practical terms, this means that realistic simulations of
the trajectories of |ψt 〉 cannot be efficiently achieved by use of the linearization technique.

On the other hand, our ‘random data’ method involves a construction that is carried
out entirely in the physical measure. The auxiliary measures are introduced simply for the
purpose of verifying the results, not for the actual specification of the solution. In that sense, the
random data method can be regarded as a major improvement over the linearization method.
In particular, to simulate a set of trajectories for {|ψt 〉} we only need to simulate outcomes for
H and {Bt } in the measure P.

7. Verification of collapse property

In this section we shall verify directly that the solution (48) of the stochastic Schrödinger
equation (1) gives rise to the collapse of the wavefunction. By substituting (4) into (15),
setting H = Ek , and inserting the resulting expression into (48), we can express the solution
of (1), conditional on H = Ek for some fixed value of k, in the form

|ψt 〉 =
∑

i

√
πi exp

(−iEit + 1
2EiEk

∫ t

0 σ 2
s ds + 1

2Ei

∫ t

0 σs dBs − 1
4E2

i

∫ t

0 σ 2
s ds

)|φi〉[∑
i πi exp

(
EiEk

∫ t

0 σ 2
s ds + Ei

∫ t

0 σs dBs − 1
2E2

i

∫ t

0 σ 2
s ds

)]1/2 . (72)

In this situation we imagine that nature has ‘secretly’ chosen the outcome H = Ek (i.e. H
takes this value for the given ω ∈ �), and we want to show that the wavefunction evolves
to the appropriate eigenstate. If we multiply the numerator and denominator of (72) by
exp
(− 1

4E2
k

∫ t

0 σ 2
s ds − 1

2Ek

∫ t

0 σs dBs

)
and write ωik = Ei − Ek , then (72) becomes

|ψt 〉 =
∑

i

√
πi exp

(−iEit − 1
4ω2

ik

∫ t

0 σ 2
s ds + 1

2ωik

∫ t

0 σs dBs

)|φi〉[∑
i πi exp

(− 1
2ω2

ik

∫ t

0 σ 2
s ds + ωik

∫ t

0 σs dBs

)]1/2

=
√

πk e−iEkt |φk〉 +
∑

i 	=k

√
πi exp

(−iEit − 1
4ω2

ik

∫ t

0 σ 2
s ds + 1

2ωik

∫ t

0 σs dBs

)|φi〉[
πk +

∑
i 	=k πi exp

(− 1
2ω2

ik

∫ t

0 σ 2
s ds + ωik

∫ t

0 σs dBs

)]1/2 . (73)

It should be evident then, on account of condition (6), that |ψt 〉 → e−iEkt |φk〉 as t → ∞.
More precisely, defining

Mt = exp

(
1

2
ω

∫ t

0
σs dBs − 1

4
ω2
∫ t

0
σ 2

s ds

)
, (74)
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we have, for any ε > 0,

P(Mt > ε) = P

(
1

2
ω

∫ t

0
σs dBs − 1

4
ω2
∫ t

0
σ 2

s ds > ln ε

)

= P


 ∫ t

0 σs dBs√∫ t

0 σ 2
s ds

>
1

2
ω

√∫ t

0
σ 2

s ds +
2 ln ε

ω

√∫ t

0 σ 2
s ds




=




1 − N
(

1
2ω

√∫ t

0 σ 2
s ds + 2 ln ε

ω
√∫ t

0 σ 2
s ds

)
(ω > 0)

N
(
− 1

2ω

√∫ t

0 σ 2
s ds − 2 ln ε

ω
√∫ t

0 σ 2
s ds

)
(ω < 0),

(75)

where N(x) is the standard normal distribution function

N(x) = 1√
2π

∫ x

−∞
e− 1

2 y2
dy. (76)

Here we have used the fact that
∫ t

0 σs dBs

/(∫ t

0 σ 2
s ds

)1/2
is normally distributed with mean zero

and variance unity. We thus see that (6) is satisfied if and only if P(Mt > ε) → 0 as t → ∞;
and hence it follows that, given condition (6), the state vector collapses to the designated
eigenstate. The intuition behind this result is that the ‘signal’ component of {ηt } eventually
dominates over the ‘noise’ component if (6) is satisfied. This is because the magnitude of∫ t

0 σs dBs is on average about
(∫ t

0 σ 2
s ds

)1/2
.

We note, incidentally, that if the leading order behaviour of the integral of
{
σ 2

t

}
is such

that
∫ t

0 σ 2
s ds ∼ tα , with α > 0, then to leading order we have σt ∼ t

1
2 (α−1), and hence∫ t

0 σs ds ∼ t
1
2 (α+1). Since the magnitude of Bt is on average of the order t1/2, we see that in

this situation the signal component in (4) also dominates over the noise component.

8. Reduction without complete collapse

In this section we show that when condition (6) is not satisfied, state reduction nevertheless
takes place, in the sense that the energy variance decreases on average. However, unlike the
models for which (6) is satisfied, in this case the terminal energy variance in general does
not vanish. In other words, the state approaches an energy eigenstate, but does not get there.
Physically, this situation corresponds to an approximate measurement of energy, in which
some information concerning the energy of the system is revealed, but no definite outcome is
obtained.

To analyse this situation we consider the energy variance process (36), which is given,
equivalently, by

Vt = 〈ψt |Ĥ 2|ψt 〉 − 〈ψt |Ĥ |ψt 〉2. (77)

Taking the stochastic differential of (77) and using the dynamical equation (1) we find that

dVt = −σ 2
t V 2

t dt + σtκt dWt, (78)

where κt is the third central moment of the energy:

κt = 〈ψt |(Ĥ − Ht)
3|ψt 〉. (79)

We observe that the drift of {Vt } is strictly negative. Therefore, the energy variance is on
average decreasing. However, if {σt } is a square-integrable function, then {Vt } may converge
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to some finite nonzero value smaller than the initial value V0. To investigate this scenario we
write (78) in integral form:

Vt = V0 −
∫ t

0
σ 2

s V 2
s ds +

∫ t

0
σsκs dWs. (80)

Taking the expectation of each side, we obtain

E[Vt ] = V0 −
∫ t

0
σ 2

s E
[
V 2

s

]
ds. (81)

On account of Jensen’s inequality we have E
[
V 2

t

]
� (E[Vt ])2, and hence (81) implies that

E[Vt ] � V0 −
∫ t

0
σ 2

s (E[Vs])
2 ds. (82)

Bearing in mind the fact that E[Vt ] � E[Vs] for t � s, the inequality (82) implies

E[Vt ] � V0 − (E[Vt ])
2
∫ t

0
σ 2

s ds. (83)

As a consequence, we obtain an upper bound on the expected value of the energy variance:

E[Vt ] � 1

2
∫ t

0 σ 2
s ds


−1 +

√
1 + 4V0

∫ t

0
σ 2

s ds


 . (84)

In the limit t → ∞ the inequality (84) determines an upper bound for the asymptotic value
of the expected energy variance. That is, on average the energy variance will be reduced to a
value no greater than the asymptotic value of the right-hand side of (84). In particular, if (6)
is satisfied, then E[Vt ] → 0 as t → ∞. On the other hand, if (6) is not satisfied, then we can
obtain a lower bound for E[V∞]. Let Vmax denote the maximum possible variance that the
energy can have, over all states. Then from (81) we get

E[V∞] � V0 − V 2
max

∫ ∞

0
σ 2

s ds. (85)

Hence providing
∫∞

0 σ 2
s ds < V0

/
V 2

max we are ensured that state reduction will be incomplete.

9. Finite-time collapse

Having investigated the case in which the coupling {σt } decays too rapidly to lead to a complete
collapse of the wavefunction, we turn to the situation where the integral of the coupling {σt }
diverges over a finite time horizon. In particular, we consider the example

σt = σT

T − t
, (86)

where σ > 0 and T > 0 are fixed constants. For the resulting state-vector dynamics we have
the following stochastic differential equation:

d|ψt 〉 = −iĤ |ψt 〉 dt − 1

8

(
σT

T − t

)2

(Ĥ − Ht)
2|ψt 〉 dt +

1

2

σT

T − t
(Ĥ − Ht)|ψt 〉 dWt. (87)

This model is of interest because the collapse of the wavefunction is achieved in finite time.
The stochastic equation (87) is identical to the finite-time collapse model introduced in

[11], where a solution to (87) is obtained by considering an ansatz of the form

ξ ∗
t = σ tH + βt . (88)
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The noise term βt appearing here is a Brownian bridge [28, 36] that vanishes at t = 0 and at
t = T . The vanishing of the noise at t = T guarantees the collapse of the wavefunction as t
approaches T. In particular, since the coupling σ in (88) is constant, {ξ ∗

t } is a Markov process,
as is shown in [12].

In the present framework, it follows immediately from (4) that the appropriate ansatz for
solving (87) is given by

ξt = σT H ln

(
T

T − t

)
+ Bt, (89)

where {Bt }0�t�T is a standard Brownian motion. Remarkably, the two prescriptions (88) and
(89) give rise to the same solution to the stochastic equation (87).

To see this we note that it follows from (16) that the energy process associated with (87)
is given by

Ht =
∑

i πiEi exp
(
σT Ei

∫ t

0
1

T −s
dξs − 1

2σ 2E2
i

tT
T −t

)
∑

i πi exp
(
σT Ei

∫ t

0
1

T −s
dξs − 1

2σ 2E2
i

tT
T −t

) . (90)

In section 3 we observed that under the probability measure Q the process {ξt } is a Brownian
motion. Therefore, in view of the expression appearing in the exponent of (90), we define a
process {ξ ∗

t } according to the following scheme:

ξ ∗
t = (T − t)

∫ t

0

1

T − s
dξs. (91)

Substituting (89) into the right-hand side of (91) we obtain

(T − t)

∫ t

0

1

T − s
dξs = σT H(T − t)

∫ t

0

1

(T − s)2
ds + (T − t)

∫ t

0

1

T − s
dBs. (92)

After a short calculation, we deduce that

(T − t)

∫ t

0

1

T − s
dξs = σ tH + βt , (93)

where {βt } is defined by

βt = (T − t)

∫ t

0

1

T − s
dBs. (94)

However, we recognize in (94) a standard integral representation of a Brownian bridge
[28, 36]. It follows that {ξ ∗

t }, as defined by (91), can be put into the form (88).
On the other hand, we also see that (91) is an integral representation of a Brownian bridge

under Q, since in this measure {ξt } is a Brownian motion. Therefore, under Q, the energy
process (90) can be expressed in terms of a Brownian bridge {ξ ∗

t } in the form

Ht =
∑

i πiEi exp
(

T
T −t

(
σEiξ

∗
t − 1

2σ 2E2
i t
))

∑
i πi exp

(
T

T −t

(
σT Eiξ

∗
t − 1

2σ 2E2
i t
)) . (95)

This result agrees with the result obtained in [11] for the finite-time collapse model.
We note, incidentally, that the innovation process associated with {ξt } in this example,

given by

Wt = ξt −
∫ t

0
σsHs ds, (96)

where σt = σT/(T − t), and the innovation process associated with {ξ ∗
t }, given by

Wt = ξ ∗
t +
∫ t

0

1

T − s
(ξ ∗

s − σT Hs) ds, (97)
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as obtained in [11], are identical if {βt } is defined as in (94). This follows on account of the
relation

ξt = ξ ∗
t +
∫ t

0

1

T − s
ξ ∗
s ds, (98)

which can be verified by writing the right-hand side of (98) in differential form:

dξ ∗
t +

1

T − t
ξ ∗
t dt = σH dt + dβt +

1

T − t
(σ tH + βt) dt

= σH dt − 1

T − t
βt dt + dBt + σH

t

T − t
dt +

1

T − t
βt dt

= H
σT

T − t
dt + dBt = dξt . (99)

Therefore, the solution obtained here in terms of {ξt } is equivalent to the solution obtained in
[11] using {ξ ∗

t }. The results above show that models exhibiting state-vector reduction over
a finite time horizon are both feasible and tractable, and that such models can be usefully
formulated by use of a time-dependent coupling.
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Appendix A. Path integral approach

In this appendix we present a path integral method for calculating the conditional probability
process {πit } and the energy expectation process {Ht }. First we note that (7) can be written in
the form

E[H |{ξs}0�s�t ] =
∑

i

Eiπit , (A.1)

where πit = P(H = Ei |{ξs}0�s�t ). By use of the Bayes theorem, the conditional probability
is given by

P(H = Ei |{ξs}0�s�t ) = πiρ({ξs}0�s�t |H = Ei)∑
i πiρ({ξs}0�s�t |H = Ei)

. (A.2)

Here the expression

ρ({ξs}0�s�t |H = Ei) =
√

1

det(2π�)

× exp

(
−1

2

∫ t

0

∫ t

0
�−1(u, v)

(
ξu − Ei

∫ u

0
σs ds

)(
ξv − Ei

∫ v

0
σs ds

)
du dv

)
(A.3)

is the density function of the trajectory {ξs}0�s�t conditional on H taking the value Ei . We
write �(u, v) for the covariance of the random variables Ei

∫ u

0 σs ds +Bu and Ei

∫ v

0 σs ds +Bv .
The form of the density function (A.3) follows from that fact that, conditional on H = Ei ,
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the random variables {ξs}0�s�t are jointly normally distributed. A straightforward calculation
making use of well-known properties of Brownian motion shows that

�(u, v) = min(u, v). (A.4)

To compute the inverse �−1(u, v) of the covariance we substitute (A.4) into the relation∫ t

0
�−1(u, s)�(s, v) ds = δ(u − v), (A.5)

and differentiate the resulting expression twice in the variable v to obtain

�−1(u, v) = −δ′′(u − v), (A.6)

where δ′′(t) denotes the second derivative of the Dirac delta function.
We note that the conditional expectation of any functional of the trajectory {ξs}0�s�t can

be determined by use of the density function (A.3); the resulting expression corresponds to
an infinite-dimensional Feynman integral. This is related to the fact that �(u, v) gives the
Feynman–Green function for a free particle [18, 20, 37].

To determine the form of the density function (A.3), one might consider substituting (A.6)
into (A.3) and then applying integration by parts, since −δ′′(t) is a second-order differential
operator (with the property that it has a positive ‘spike’ at t = 0 and a pair of negative ‘spikes’
at t = 0+ and t = 0−). However, the integral in the exponent of (A.3) is ill-defined as it
stands. Indeed, it is a straightforward exercise to verify that, depending on the order in which
integration by parts is applied, one obtains different answers. To circumvent this difficulty we
shall discretize the process {ξt } first, derive the corresponding expression for the conditional
density function (A.2), and then take the continuum limit.

Our strategy for determining the conditional probability law for the trajectory {ξs}0�s�t

is thus as follows. Fixing t, we partition the range [0, t] into n equally spaced intervals.
In particular, we set sk = k�(k = 0, 1, . . . , n), where � = t/n. We then calculate the
covariance of the random variables Ei

∫ sk

0 σu du + Bsk
and Ei

∫ sl

0 σu du + Bsl
, and obtain

following expression for the covariance matrix (cf [16]):

�(sk, sl) =




s1 s1 s1 s1 · · · s1 s1

s1 s2 s2 s2 · · · s2 s2

s1 s2 s3 s3 · · · s3 s3

s1 s2 s3 s4 · · · s4 s4

...
...

...
...

. . .
...

...

s1 s2 s3 s4 · · · sn−1 sn−1

s1 s2 s3 s4 · · · sn−1 sn




. (A.7)

The validity of this result should be evident from the continuous case (A.4). The inverse of
the covariance matrix is the following second-order difference operator:


1
s1−s0

+ 1
s2−s1

− 1
s2−s1

0 0 · · · 0

− 1
s2−s1

1
s2−s1

+ 1
s3−s2

− 1
s3−s2

0 · · · 0

0 − 1
s3−s2

1
s3−s2

+ 1
s4−s3

− 1
s4−s3

0 0
...

. . .
. . .

. . .
. . .

...

0 · · · · · · − 1
sn−1−sn−2

1
sn−1−sn−2

+ 1
sn−sn−1

− 1
sn−sn−1

0 · · · · · · 0 − 1
sn−sn−1

1
sn−sn−1




. (A.8)
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Note that the last term on the diagonal is anomalous and is different from the remaining
terms on the diagonal. Because the partition of the interval [0, t] is equally spaced, we have
sk − sk−1 = � for all k = 1, 2, . . . , n. Therefore (A.8) simplifies to

�−1
kl = 1

�




2 −1 0 · · · · · · · · · 0
−1 2 −1 0 · · · · · · 0
0 −1 2 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 2 −1 0
0 · · · · · · 0 −1 2 −1
0 · · · · · · · · · 0 −1 1




. (A.9)

For simplicity of notation, let us write

αi(sk) = ξsk
− Ei

∫ sk

0
σu du. (A.10)

Then the discretized form of the conditional density function (A.3) takes the form

ρ
({

ξs1 , ξs2 , . . . , ξsn

}∣∣HT = Ei

) =
(

�

2π

) 1
2 n

exp

(
−1

2

n∑
k=1

n∑
l=1

�−1
kl αi(sk)αi(sl)

)

=
(

�

2π

) 1
2 n

exp

(
1

�

n−1∑
k=1

αi(sk)[αi(sk+1) − αi(sk)] − 1

2�
α2

i (sn)

)
. (A.11)

Here we have used expression (A.9) for the inverse covariance matrix. Let us examine the
terms in the exponent. Substituting definition (A.10) we find that

αi(sk)[αi(sk+1) − αi(sk)] = ξsk
(ξsk+1 − ξsk

) + E2
i

∫ sk

0
σu du

∫ sk+1

sk

σv dv

+ Ei

((
ξsk+1 − ξsk

) ∫ sk+1

sk

σu du − ξsk+1

∫ sk+1

0
σu du + ξsk

∫ sk

0
σu du

)
. (A.12)

Turning to the conditional probability (A.2) that we aim to determine, we observe by
inspection of the right-hand side of (A.2) that all terms in the exponent that are independent
of the eigenvalue Ei , such as the term ξsk

(ξsk+1 − ξsk
) in the right-hand side of (A.12), cancel.

This is because such terms appear in both the denominator and the numerator. Hence in what
follows we omit such terms. Equality modulo omitted terms will be denoted by the ∼ symbol.
Bearing this in mind, we see that the sum over k of the right-hand side of (A.12) gives
n−1∑
k=1

αi(sk)[αi(sk+1) − αi(sk)] ∼ E2
i

n−1∑
k=1

∫ sk

0
σu du

∫ sk+1

sk

σv dv

+ Ei

(
n−1∑
k=1

σsk

(
ξsk+1 − ξsk

)
� − ξsn

∫ sn

0
σu du + ξs1σs0�

)
. (A.13)

In deducing this result we have used the fact that for sufficiently large n, and hence sufficiently
small �, the following relation holds to a high degree of accuracy:∫ sk+1

sk

σu du = σsk
�. (A.14)

Similarly, omitting the term that contains no Ei we have

α2
i (sn) ∼ −2Eiξsn

∫ sn

0
σu du + E2

i

(∫ sn

0
σu du

)2

. (A.15)
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Substituting (A.13) and (A.15) into (A.11), we deduce that

ρ
({

ξs1 , ξs2 , . . . , ξsn

}∣∣HT = Ei

) ∼ exp

(
Ei

n−1∑
k=0

σsk

(
ξsk+1 − ξsk

)− 1

2
E2

i

n−1∑
k=0

σ 2
sk
�

)
. (A.16)

Here we have made use of the fact that to a high degree of accuracy one has(∫ sn

0
σu du

)2

=
n−1∑
k=0

σ 2
sk
(�t)2 + 2

n−1∑
k 	=l

σsk
σsl

�2. (A.17)

We have also used the fact that
n−1∑
k=1

k−1∑
l=0

σsk
σsl

=
n−1∑
k 	=l

σsk
σsl

. (A.18)

Note that the first sum in the exponent of (A.16) begins from k = 0, and not k = 1 as in the
right-hand side of (A.13). This is because the last term in the right-hand side of (A.13) can be
written as σs0

(
ξs1 − ξs0

)
� (since ξs0 = 0) and thus be absorbed in the sum.

We are now in the position to take the limit n → ∞. In particular, the first term in the
exponent of (A.16) converges in this limit to an Ito integral of {σt } with respect to the process
{ξt }, since the discrete approximation is always taken to be the value of the integrand at sk

in each interval [sk, sk+1]. The second sum, on the other hand, converges to the Riemann
integral of the function

{
σ 2

t

}
. Writing {pit } for the unnormalized density function given by

the right-hand side of (A.16), we thus deduce, in the limit n → ∞, that

pit = exp

(
Ei

∫ t

0
σs dξs − 1

2
E2

i

∫ t

0
σ 2

s ds

)
. (A.19)

As a consequence, for the conditional probability process {πit } we obtain (15), as desired.

Appendix B. Decomposition of path into increments

In this appendix we introduce another method for obtaining {πit }, based on the decomposition
of the path of the quantum information process into its increments. The argument goes as
follows. Recalling the dynamical equation (8) satisfied by the information process {ξt }, we
note that {σt } moderates the strength of the signal showing the true value of H. An equivalent
set of information can be obtained by moderating the noise level by use of the reciprocal
function {1/σt }. Thus we consider a process {ζt } defined by

ζt = Ht +
∫ t

0

1

σs

dBs. (B.1)

The relation between {ξt } and {ζt } is given by

dζt = 1

σt

dξt . (B.2)

This alternative representation is motivated by Wonham [35], where the filtering equation for
a signal associated with a fixed random variable is investigated.

The fact that the information implicit in {ξs}0�s�t and {ζs}0�s�t is equivalent will be
shown. We begin with the discretization of the period [0, t] into n equally spaced intervals of
size � = t/n, and set sk = k� for k = 0, 1, . . . , n. We define a process for the increments of
{ζt } by setting ysk

= ζsk+1 − ζsk
. It follows from (B.1) that

ysk
= H� +

∫ sk+1

sk

σ−1
u dBu. (B.3)
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For each value of n, the random variables ysk
− H� (k = 0, 1, . . . , n − 1) are independent

and normally distributed, with mean zero and variance

vsk
=
∫ sk+1

sk

σ−2
u du. (B.4)

If we assume that � is small, then to a high degree of accuracy we have vsk
= σ−2

sk
�. Next

we note that

P
(
H = Ei

∣∣ζs0 , ζs1 , . . . , ζsn

) = P
(
H = Ei

∣∣ys0 , ys1 , . . . , ysn−1

)
. (B.5)

This relation follows from the fact that conditioning with respect to
{
ζsk

}
k=0,1,...,n

is equivalent

to conditioning with respect to the corresponding increments. Letting
{
π

(n)
it

}
denote the

conditional probability defined by (B.5), we conclude that

π
(n)
it = πi exp

(− 1
2

∑n−1
k=0 v−1

sk

(
ysk

− Ei�
)2)

∑
i πi exp

(− 1
2

∑n−1
k=0 v−1

sk

(
ysk

− Ei�
)2)

= πi exp
(
Ei�

∑n−1
k=0 v−1

sk
ysk

− 1
2E2

i

∑n−1
k=0 v−1

sk
�2
)

∑
i πi exp

(
Ei�

∑n−1
k=0 v−1

sk
ysk

− 1
2E2

i

∑n−1
k=0 v−1

sk
�2
) .

(B.6)

Substituting the right-hand side of (B.4) into (B.6), and taking the limit as n gets large, we
have

πit = lim
n→∞ π

(n)
it = πi exp

(
Ei

∫ t

0 σ 2
s dζs − 1

2E2
i

∫ t

0 σ 2
s ds

)
∑

i πi exp
(
Ei

∫ t

0 σ 2
s dζs − 1

2E2
i

∫ t

0 σ 2
s ds

) . (B.7)

In taking the limit to obtain a stochastic integral we have followed a line of argument similar
to that of appendix A. This verifies that the information content of the trajectories {ξs}0�s�t

and {ζs}0�s�t is the same.
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